Involvement of WNT Signaling in the Regulation of Gestational Age-Dependent Umbilical Cord-Derived Mesenchymal Stem Cell Proliferation

نویسندگان

  • Sota Iwatani
  • Akemi Shono
  • Makiko Yoshida
  • Keiji Yamana
  • Khin Kyae Mon Thwin
  • Jumpei Kuroda
  • Daisuke Kurokawa
  • Tsubasa Koda
  • Kosuke Nishida
  • Toshihiko Ikuta
  • Kazumichi Fujioka
  • Masami Mizobuchi
  • Mariko Taniguchi-Ikeda
  • Ichiro Morioka
  • Kazumoto Iijima
  • Noriyuki Nishimura
چکیده

Mesenchymal stem cells (MSCs) are a heterogeneous cell population that is isolated initially from the bone marrow (BM) and subsequently almost all tissues including umbilical cord (UC). UC-derived MSCs (UC-MSCs) have attracted an increasing attention as a source for cell therapy against various degenerative diseases due to their vigorous proliferation and differentiation. Although the cell proliferation and differentiation of BM-derived MSCs is known to decline with age, the functional difference between preterm and term UC-MSCs is poorly characterized. In the present study, we isolated UC-MSCs from 23 infants delivered at 22-40 weeks of gestation and analyzed their gene expression and cell proliferation. Microarray analysis revealed that global gene expression in preterm UC-MSCs was distinct from term UC-MSCs. WNT signaling impacts on a variety of tissue stem cell proliferation and differentiation, and its pathway genes were enriched in differentially expressed genes between preterm and term UC-MSCs. Cell proliferation of preterm UC-MSCs was significantly enhanced compared to term UC-MSCs and counteracted by WNT signaling inhibitor XAV939. Furthermore, WNT2B expression in UC-MSCs showed a significant negative correlation with gestational age (GA). These results suggest that WNT signaling is involved in the regulation of GA-dependent UC-MSC proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of telomerase activity, proliferation and differentiation characteristics in umbilical cord blood mesenchymal stem cells

In recent years, considerable advances have been made in the field of regenerative medicine. Unlikeembryonic stem cells, which pose the problems of ethical concerns and cause severe immunological reactions as well as neoplasma formation after transplantation, umbilical cord blood is a primitive source ofmesenchymal stem cells that covers the benefits of both embryonic and adult stem cells. It h...

متن کامل

The effect of amniotic membrane extract on umbilical cord blood mesenchymal stem cell expansion: is there any need to save the amniotic membrane besides the umbilical cord blood?

Objective(s): Umbilical cord blood is a good source of the mesenchymal stem cells that can be banked, expanded and used in regenerative medicine.  The objective of this study was to test whether amniotic membrane extract, as a rich source of growth factors such as basic-fibroblast growth factor, can promote the proliferation potential of the umbilical cord mesenchymal stem cells. Materials and ...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

Platelet Rich in Growth Factors (PRGF): A Suitable Replacement for Fetal Bovine Serum (FBS) in Mesenchymal Stem Cell Culture

Background: Due to high differentiation potential and self-renewality, Mesenchymal Stem Cells are now widely considered by researchers in several diseases. FBS is used as a supplement in culture media for proliferation, differentiation, and other culture processes of MSCs, which is associated with transmission risk of a variety of infections as well as immune responses. PRGF derived from platel...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017